Liquid Ring VACUUM PUMP A professional manufacturer of pumps and mechanical seals. # SEPA KOREA SEPA KOREA has pursued "Fluid-Total-System" in the pump&mechanical seal field by R&D. On the basis of such technology, we launched a Liquid ring vacuum pump. Because of this development, we can get closer to our customer in the field. Through accumulated technology of SEPA KOREA, the Liquid ring vacuum pump is developed and it meets our customer needs. ## What is a Liquid ring vacuum pump? 진공펌프를 운전할 때 케이싱에 적당한 양의 물을 넣고 편심되게 장착된 임펠러를 회전시키면, 아래 오른쪽 그림과 같이 물은 원심력에 의하여 케이싱의 내벽에 동심원 모양(파란부분)으로 봉수링을 형성한다. 이 봉수링의 내벽과 임펠러 날개로 생기는 공간이 펌프가 회전함에 따라 변화하는 것을 이용하여 그 공간으로 흡입구에서 기체를 흡입하며, 배기구에 가까워지면서 기체는 압축되어 물과 함께 배출된다. The internals of the liquid ring vacuum pump are partially filled with liquid in operation. Casing and port plates form the internals, where the eccentrically mounted rotating impeller forms a liquid ring. The liquid ring forms a cell between the impeller blades, that expands during rotation and thus draws the gas through the suction port. As the impeller rotates further, these cells are getting smaller and consequently compressing the gas through the discharge port. Together with the gas, a part of the liquid will be expelled through the discharge port that is separated from the gas in the separator. #### **Features** #### 케이싱 진공과 기체 배출에 최적화 된 구조로써 잔류물 없이 흡입, 압축 및 배기작업을 할 수 있다. #### Casing As the state-of-the-art design for the vacuum & exhaust, inhale / compression / discharge are realized without processing residuum. #### 재질과 간극_ 용도에 따라 펌프의 재질이 결정되고, 주요부품 사이의 정밀한 간극은 펌프가 문제점 없이 운전되도록 설계되어 있다. #### Material & Clearance_ Optional material composition is possible as per processing. It is designed to be repeated without working error when maintaining the slight-clearance in the parts of stationary and rotation. #### 임펠러 한차원 높은 설계와 정밀한 구조에 의하여 유체저항 및 케이테이션 현상을 극소화시켰다. #### Impeller_ By designing an ideal mechanical design and precision-mold, Flow resistance and cavitation are minimized. #### 메카니칼씰 재질: SIC/TC/CARBON 형식: 멀티씰/모노씰, 벨로우즈씰, 싱글씰/더블씰 #### Mechanical Seal_ Material (SIC / TC/ Carbon etc.) Type (Multi/Mono, Bellows, Single/Double) Any types are possible; we manufacture all pumps at our plant. # **Typical Service Liquid Supply** #### **ONCE-THROUGH RECOVERY** The once-through recovery system takes water directly from the water supply through the pump and discharges it directly through a gas/ liquid separator tank to an approved drain. This arrangement is most common on small pumps, in installations where water conservation is not a factor, or where contamination of sealant is not a factor. Optional valving arrangement is designed to conserve sealant flow and power, and when the pump is operating at high pressure(low vacuum). #### **PARTIAL SEALANT RECOVERY** In the partial recovery arrangement, the pump discharges water and gas into a gas/ liquid separator tank, releasing the gas to the atmosphere and retaining the water. Some water is disposed of through an overflow and the remainder is retained in the separator tank for recirculation. Makeup water is added in a quantity necessary to maintain proper sealing water temperature. This is the most commonly used arrangement where sealing liquid conservation is required. #### **FULL SEALANT RECOVERY** A full sealant recovery system is a closedloop sealing configuration that employs a heat exchanger (water-or air-cooled) to maintain proper sealing fluid temperature. For piping arrangement. This arrangement is not suitable for prolonged operation at pressure above 400 Torr (533.28 mbar) unless a circulating pump is installed. Full liquid recovery systems often operate under conditions where condensation would cause the liquid level to rise, making it necessary to drain liquid from the unit in order to maintain the liquid level. The opposite condition can exist whereby liquid evaporation makes it necessary to add makeup liquid to maintain the liquid level. If there are extensive piping fittings and valves and other restrictive devices in the sealant line on a full recovery system that does not use a circulation pump, the sealant liquid is induced into the pump under pump suction entirely. For sustained operation above 400 Torr (533.28 mbar), on rapid cycling of pump-down from the atmosphere, a circulation pump may be required. A circulation pump, when added to a full recovery system, maintains proper sealant flow at all inlet pressure conditions. The pressure on the sealant gauge will vary depending upon the inlet pressure, from several inches of vacuum to a slightly positive pressure. Normally, a common supply line is used for both seal liquid and mechanical seal cooling. # **Cycled Use of the Sealing Liquid** #### 1 Large Storage Tank | 대형 저액조 - The sealing liquid coming from the gas and liquid separation tank is put in this large storage tank for natural air cooling. Tanks separated for gas and liquid are available along with the other one for combined use. Since the liquid surface is open to the air, the tank is not adequate for the work generating toxic gas or steam. It is quite useful for small-pump for water saving purposes, expecially for its intermittent operation. 기·액 분리조로부터 유출된 봉액(Sealing Liquid)을 대형조에 넣어 자연공냉하는 것이다. 기·액 분리조 및 겸용형도 가능하다. 액면이 대기에 개방되므로 유해가스, 증기가 발생 하는 작업에 부적당하며 절수를 목적으로 한 소형 펌프 특히 단속 운전에 유효하다. #### -② Cooling Tower | 냉각탑 - Sealing liquid coming from the separation tank is frozen here in this cooling tank used in parallel with the large storage tank. So it needs a pump to transport sealing liquid. As for the exhaustion of toxic gases, careful attention needs to be paid as described in above. Adequate for a relatively large pump whose sealing liquid is water. 기·수 분리조로부터 유출된 봉액을 대형의 저액조와 병용하여 강제 냉각되므로 봉액이송 펌프가 필요하다. 유해한 가스의 배기에 관해서는 ① 과 같은 주의가 필요하다. 봉액이물이며 비교적 대용량의 펌프에 적당하다. #### · Cooler | 쿨러 · Air-cooling is done while passing a cooler. As the circulation circuit can be used closed, it is not proper to use it for high quantity circulation taking into account its structure, which is adequate for toxic gas exhaust. 쿨러를 통과하는 동안 외부로부터 강제 공냉하는 방식으로 순환회로는 밀폐형이 가능하므로 유해물질의 배기에 적당한 쿨러의 구조상 순환량이 많은 것은 부적당하다. #### ④ Water Heat Exchanger | 수냉형 열교환기 As a multi-vessel or plate heat exchanger, this water heat exchanger cools the sealing water using water. As it is a closed type, it is adequate to use it to exhaust toxic materials like in §. In general it is used for multi-purpose. 다관식 또는 plate형의 열교환기로서 봉액을 수냉하는 것으로서 회로는 밀폐형이 되므로 ③과 같은 유해물질의 배기에 적당하여 다용도의 일반적인 방식이다. ## **Vacuum System** ▲ Single System ▲ Dual System ▲ Multi System ▲ Booster System # **Vacuum Unit Conversion Table** | | Pa
N/m² | bar | mbar | μbar
dyn/cm² | Torr
mmHg | mTorr | atm | |-------|----------------------|-----------------------|-----------------------|----------------------|----------------------|---------------------|-----------------------| | Pa | 1 | 1×10 ⁻⁵ | 1×10 ⁻² | 10 | 7.5×10 ⁻³ | 7.5 | 9.87×10 ⁻⁶ | | bar | 1×10 ⁵ | 1 | 1×10³ | 1×10 ⁶ | 750 | 7.5×10 ⁵ | 0.987 | | mbar | 100 | 1×10 ⁻³ | 1 | 1×10³ | 0.75 | 750 | 9.87×10 ⁻⁴ | | μbar | 0.1 | 1×10 ⁻⁶ | 1×10 ⁻³ | 1 | 7.5×10 ⁻⁴ | 0.75 | 9.87×10 ⁻⁷ | | Torr | 133 | 1.33×10 ⁻³ | 1.33 | 1.33×10³ | 1 | 1000 | 1.32×10 ⁻³ | | mTorr | 0.133 | 1.33×10 ⁻⁶ | 1.33×10 ⁻³ | 1.33 | 1×10 ⁻³ | 1 | 1.32×10 ⁻⁶ | | atm | 1.01×10 ⁵ | 1.013 | 1013 | 1.01×10 ⁶ | 760 | 7.6×10 ⁵ | 1 | # **Water Vapor Pressure** | Temp.
(℃) | Vapor Pre.
(mmHg) | |--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------| | 0 | 4.579 | 25 | 23.756 | 50 | 92.51 | | 289.10 | | 1 | 4.926 | 26 | 25.209 | 51 | 97.20 | 76 | 310.40 | | 2 | 5.294 | 27 | 26.739 | 52 | 102.09 | | 314.10 | | 3 | 5.685 | | 28.349 | | 107.20 | | 327.30 | | 4 | 6.101 | | 30.043 | | 112.51 | | 341.00 | | 5 | 6.545 | | 31.824 | | 118.04 | 80 | 355.10 | | 6 | 7.013 | | 33.695 | | 123.80 | | 369.70 | | 7 | 7.513 | 32 | 35.663 | 57 | 129.82 | | 384.90 | | 8 | 8.045 | 33 | 37.729 | 58 | 136.03 | | 400.60 | | 9 | 8.609 | 34 | 39.898 | 59 | 142.60 | | 416.80 | | 10 | 9.209 | 35 | 42.175 | 60 | 149.38 | 85 | 433.60 | | 11 | 9.844 | 36 | 44.563 | 61 | 156.43 | 86 | 450.90 | | 12 | 10.518 | 37 | 47.067 | 62 | 163.77 | 87 | 468.70 | | 13 | 11.231 | 38 | 49.692 | 63 | 171.38 | | 487.10 | | 14 | 11.987 | 39 | 52.442 | 64 | 179.31 | | 506.10 | | 15 | 12.788 | 40 | 55.324 | 65 | 187.54 | | 525.76 | | 16 | 13.634 | 41 | 58.340 | 66 | 196.09 | | 546.05 | | 17 | 14.530 | 42 | 61.500 | 67 | 204.96 | | 566.99 | | 18 | 15.477 | 43 | 64.800 | 68 | 214.17 | | 588.60 | | 19 | 16.477 | 44 | 68.260 | 69 | 223.73 | 94 | 610.90 | | 20 | 17.535 | 45 | 71.880 | 70 | 233.70 | 95 | 633.90 | | 21 | 18.650 | 46 | 75.650 | 71 | 243.90 | | 657.62 | | 22 | 19.827 | 47 | 79.600 | 72 | 254.60 | | 682.07 | | 23 | 21.068 | 48 | 83.710 | 73 | 265.70 | | 707.27 | | 24 | 22.377 | 49 | 88.020 | 74 | 277.20 | 99 | 733.24 | # Vacuum Pump Capacity Calculation S=2.303*(V/T)*log(P1/P2) S= Vacuum pump capacity (ℓ /min, V= Chamber capacity(ℓ), T= Required pumping time (min) P1= Atmospheric pressure, 760 Torr P2= Required vacuum(Torr) Because the above calculation is a theoretical one, Please consider the safety factor as the list | Vacumm (Torr) | Safety Factor | |---------------|---------------| | 760 ~ 100 | 1.0 | | 100 ~ 10 | 1.25 | | 10 ~ 0.5 | 1.5 | | 0.5 ~ 0.05 | 2.0 | | 0.05 ~ 0.01 | 4.0 | ### **Performance curve** The above data is tested with 15°C(±10%) water, and under conditions of 20°C(±10%) process temperature for intake & exhaust. As per water temperature, Volume flow rate # **Technical Data** | | Displacem | Displacement Speed | | Motor | Seal Water | Suction | Exhaust | Dimension | Weight | | |---------------|-----------|--------------------|--------------------------|----------|------------|---------|---------|---------------|--------------|--| | Specification | 60Hz | 50Hz | Pressure | | Flow | port | port | | (with Motor) | | | | ℓ/min | | Pa(Torr) | kW(Pole) | ℓ/min | mm | mm | mm(L×W×H) | kg | | | SPV1.5K1 | 1,500 | 1,250 | 6.7×10³(50) | 2.2(4) | 8 | 40A | 40A | 945×240×420 | 80 | | | SPV2.5K1 | 2,500 | 2,000 | 6.7×10 ³ (50) | 3.7(4) | 10 | 50A | 50A | 1,080×270×440 | 120 | | | SPV3K1 | 3,000 | 2,500 | 6.7×10³(50) | 5.5(4) | 15 | 50A | 50A | 1,140×270×440 | 130 | | | SPV4K1 | 4,000 | 3,300 | 6.7×10³(50) | 7.5(4) | 20 | 80A | 80A | 1,325×330×520 | 160 | | | SPV5K1 | 5,000 | 4,100 | 6.7×10³(50) | 11(4) | 30 | 80A | 80A | 1,365×330×520 | 175 | | | SPV7K1 | 7,000 | 5,800 | 6.7×10³(50) | 15(4) | 35 | 80A | 80A | 1,485×330×520 | 210 | | | SPV8K1 | 8,000 | 6,650 | 6.7×10³(50) | 18.5(4) | 40 | 80A | 80A | 1,470×400×600 | 360 | | | SPV10K1 | 10,000 | 8,300 | 6.7×10³(50) | 22(4) | 45 | 80A | 80A | 1,570×400×600 | 480 | | | SPV12K1 | 12,000 | 10,000 | 6.7×10³(50) | 30(4) | 60 | 80A | 80A | 1,670×400×600 | 510 | | | SPV20K1 | 20,000 | 16,500 | 6.7×10 ³ (50) | 55(6) | 85 | 125A | 125A | 2,115×500×725 | 750 | | | | Displacement Speed | | Ultimate | Motor | Seal Water | Suction | Exhaust | Dimension | Weight | | |---------------|--------------------|--------|--------------------------|----------|------------|---------|---------|---------------|--------------|--| | Specification | 60Hz | 50Hz | Pressure | | Flow | port | port | | (with Motor) | | | | ℓ/min | | Pa(Torr) | kW(Pole) | ℓ/min | mm | mm | mm(L×W×H) | kg | | | SPV1.5K2 | 1,500 | 1,250 | 2.7×10 ³ (20) | 3.7(4) | 8 | 40A | 40A | 995×240×420 | 95 | | | SPV2.5K2 | 2,500 | 2,000 | 2.7×10 ³ (20) | 5.5(4) | 10 | 50A | 50A | 1,140×270×440 | 135 | | | SPV3K2 | 3,000 | 2,500 | 2.7×10 ³ (20) | 7.5(4) | 15 | 50A | 50A | 1,210×270×440 | 145 | | | SPV4K2 | 4,000 | 3,300 | 2.7×10 ³ (20) | 11(4) | 20 | 80A | 80A | 1,390×330×520 | 205 | | | SPV5K2 | 5,000 | 4,100 | 2.7×10 ³ (20) | 15(4) | 30 | 80A | 80A | 1,430×330×520 | 215 | | | SPV7K2 | 7,000 | 5,800 | 2.7×10 ³ (20) | 18.5(4) | 35 | 80A | 80A | 1,550×330×520 | 260 | | | SPV8K2 | 8,000 | 6,650 | 2.7×10 ³ (20) | 22(4) | 40 | 80A | 80A | 1,560×400×600 | 410 | | | SPV10K2 | 10,000 | 8,300 | 2.7×10 ³ (20) | 30(4) | 45 | 80A | 80A | 1,660×400×600 | 560 | | | SPV12K2 | 12,000 | 10,000 | 2.7×10 ³ (20) | 37(4) | 60 | 80A | 80A | 1,760×400×600 | 680 | | | SPV20K2 | 20,000 | 16,500 | 2.7×10³(20) | 75(6) | 85 | 125A | 125A | 2,450×500×725 | 1,190 | | # **Dimension(mm)** | MODEL | А | В | С | D | Е | F | G | Н | |----------|-------|-----|-----|-------|-----|-----|-----|-----| | SPV1.5K1 | 950 | 155 | 230 | 750 | 240 | - | 250 | 420 | | SPV2.5K1 | 965 | 235 | 290 | 770 | 270 | 180 | 250 | 420 | | SPV3K1 | 1,075 | 270 | 325 | 880 | 270 | 180 | 250 | 420 | | SPV4K1 | 1,265 | 310 | 375 | 1,015 | 320 | 235 | 330 | 525 | | SPV5K1 | 1,370 | 312 | 397 | 1,085 | 320 | 235 | 330 | 525 | | SPV7K1 | 1,450 | 348 | 433 | 1,135 | 320 | 235 | 330 | 525 | | SPV8K1 | 1,410 | 330 | 420 | 1,140 | 400 | 235 | 390 | 600 | | SPV10K1 | 1,510 | 355 | 445 | 1,230 | 400 | 235 | 390 | 600 | | SPV12K1 | 1,610 | 430 | 620 | 1,550 | 400 | 235 | 390 | 600 | | SPV20K1 | 2,125 | 550 | 630 | 1,655 | 500 | 310 | 460 | 725 | | MODEL | Α | В | С | D | Е | F | G | Н | 1 | |----------|-------|-----|-----|-----|-------|-----|-----|-----|-----| | SPV1.5K2 | 1,030 | 155 | 260 | 230 | 830 | 240 | - | 250 | 420 | | SPV2.5K2 | 1,065 | 155 | 260 | 210 | 870 | 270 | 180 | 250 | 420 | | SPV3K2 | 1,185 | 155 | 340 | 210 | 990 | 270 | 180 | 250 | 420 | | SPV4K2 | 1,390 | 200 | 345 | 265 | 1,140 | 320 | 235 | 330 | 525 | | SPV5K2 | 1,495 | 200 | 380 | 285 | 1,210 | 320 | 235 | 330 | 525 | | SPV7K2 | 1,575 | 200 | 420 | 285 | 1,260 | 320 | 235 | 330 | 525 | | SPV8K2 | 1,560 | 180 | 450 | 270 | 1,290 | 400 | 235 | 390 | 600 | | SPV10K2 | 1,660 | 180 | 500 | 270 | 1,380 | 400 | 235 | 390 | 600 | | SPV12K2 | 1,760 | 180 | 650 | 370 | 1,700 | 400 | 235 | 390 | 600 | | SPV20K2 | 2,450 | 360 | 440 | 550 | 1,850 | 500 | 310 | 460 | 725 | # **Exploded view** | NO | Part Name | Material | NO | Part Name | Material | NO | Part Name | Material | |----|---------------|--------------|----|-----------------|--------------|----|-----------------|----------| | 1 | Casing | STS304/GC250 | 8 | 2ne Impeller | STS304 | 15 | Mechanical Seal | | | 2 | Stator Cover1 | STS304/GC250 | 9 | 2ne Impeller | STS304 | 16 | Bearing Cover | SM45C | | 3 | Stator Cover2 | STS304/GC250 | 10 | Shaft | STS304 | 17 | Bearing | | | 4 | Stator Cover3 | STS304/GC250 | 11 | Retainer | STS304 | 18 | Lock Nut | STS304 | | 5 | Stator Cover4 | STS304/GC250 | 12 | Bearing Housing | GC250 | 19 | Lock Washer | STS304 | | 6 | 1st Housing | STS304/GC250 | 13 | Manifold Pipe | STS304/GC250 | 20 | Lock Nut | STS304 | | 7 | 2nd Housing | STS304/GC250 | 14 | Seal Cover | STS304 | 21 | Lock Washer | STS304 | # **Vacuum Self Priming Pump** ## **Technical Data** | Specification | Capacity | Head | Motor | Suction port | Exhaust port | |---------------|----------|------|----------|--------------|--------------| | Specification | m³/min | m | kW(Pole) | mm | mm | | SPVP40 | 0.12 | 15 | 2.2(4) | 40A | 40A | | SPVP50 | 0.20 | 20 | 3.7(4) | 50A | 50A | # **Dimension(mm)** | MODEL | А | В | С | D | Е | F | G | Н | |---------|-----|-----|-----|----|-----|-----|-----|-----| | SPVP40H | 755 | 675 | 500 | 75 | 140 | 310 | 330 | 190 | | SPVP50H | 815 | 715 | 600 | 95 | 170 | 310 | 360 | 175 | | MODEL | А | В | С | D | Е | F | G | н | |---------|-----|-----|-----|----|-----|-----|-----|-----| | SPVP40V | 500 | 420 | 300 | 75 | 140 | 310 | 330 | 190 | | SPVP50V | 560 | 460 | 400 | 95 | 170 | 310 | 360 | 175 | # Maximize Efficiency, Minimize Trouble!